
Copyright 1994 AT&T and Lumeta Corporation. All Rights Reserved.

Notice: For personal use only. These materials may not be reproduced or distributed in any form

or by any means except that they may be downloaded from this source and printed for personal use.

6

Gateway Tools

Beyond those we have already discussed, several other software tools are useful for building an
application-level gateway. The tools include proxylib, a portable version of the 10th Edition UNIX

system connection server interface [Presotto and Ritchie, 1985], proxy, and others. Many of these
tools are publicly available; see Appendix A for details.

In designing our own tools and libraries, we have, as much as possible, followed the oft-cited,
seldom-heeded, “UNIX philosophy”. That is, our tools are simple and modular, and have few flags,
frills, or options.

6.1 Proxylib

Building a firewall means writing lots of small programs that need to open network connections.
That, in turn, means writing and rewriting the same set of routines to call gethostbyname
and/or inet ntoa, socket, connect, etc. Worse yet, you may need several versions of many
of those programs to handle inside callers, outside callers, pass-through callers, etc. There has to
be a better way.

Fortunately, there is. We developed a version of the 10th Edition connection server that will
run on just about any UNIX system. Creating a file descriptor for a network connection is now
a matter of one or two subroutine calls, with no mystic structures or system calls involved. The
primary argument is a character string of the form

dest!service

where dest is a host name or numeric IP address and service is the port number or service
name. Proxylib buys you more than that. There is an optional leading field specifying the dialer
type. For example,

tcp!host!service

will connect via TCP. Other dialers might be dk (Datakit VCS), dial (a phone number), or atm.
Our library includes a dialer named proxy that connects to the firewall proxy service somehow:

125

126 Gateway Tools

The method is determined at compile time or by the address(es) given in the environment variable
$PROXY. The benefits are considerable. For example, most of the proxy NFS we developed was
debugged using an explicit request for TCP. Using it through the firewall required no changes
whatsoever to the code.

The two principal entry points are

int
ipcopen(char *path, char *flags);

and

char *
ipcpath(char *dest, char *defdialer, char *defservice);

where defdialer and defservice are the default dialer and service, respectively. The path
argument to ipcopen is of the form

dialer!destination!service

The ipcpath routine behaves as follows:

ipcpath("x!y!z", "defdial", "defservice") � "x!y!z"
ipcpath("x!y", "defdial", "defservice") � "x!y!defservice"
ipcpath("x", "defdial", "defservice") � "defdial!x!defservice"

The normal call in, say, ptelnet is

fd = ipcopen(ipcpath(dest, "proxymach", "telnet"), "");

That is, "proxymach" is the default dialer and "telnet" is the default service. Either or
both can be overridden explicitly by the user. By convention, proxymach is the gateway
administratively assigned to that user. The environment variable $PROXY can contain a comma-
separated list of gateways to use for proxy connections. The user could even call ptelnet with the
tcp dialer and get normal, local telnet connections.

The flags argument to ipcopen is used for things like FTP, to create an incoming socket
and pass back its address, and for our prototype proxy X11.

The converted version of telnet is ptelnet, ftp is pftp, etc. This leaves the local unmodified
versions of these programs available and makes the existence of the modified versions obvious.

One criticism of our gateway approach is the need to modify internal programs. These have
indeed raised questions of support and portability. By isolating the network-dependent code
in the proxy library, portability has been much easier. Generally, the major AT&T Computer
Center computers all have these modified programs available, and we make the complete package
available on internal anonymous FTP servers. We know of no attempts to add the proxy protocol
to PCs and Macintoshes, although it probably wouldn’t be too hard. The protocol is simple to
implement. Some of the services can be implemented at the gateway. For example, our users can
telnet to our gateway and then give a command to telnet to an external destination. The Digital
and TIS gateway packages contain similar arrangements for ftp.

Our proxy library does have one notable limitation: it provides no support for the TCP urgent
pointer. This is normally used in telnet and especially ftp to abort processing. Historically, we
could not implement this feature easily through Datakit and other networks. We could implement
it through our current gateway, but its loss is a minor irritation and hasn’t been worth the effort.

Syslog 127

6.1.1 Socks

The socks package [Koblas and Koblas, 1992] is a publicly available TCP circuit gateway package.
Like our proxy package, it can be installed easily into network applications. In fact, it has a one-
for-one replacement for each standard networking call, i.e., connect becomes Rconnect, etc.,
which makes it easier to install.

Most releases of major software are quickly converted to use socks, including some for PCs
and Macintoshes.

Socks works at the numeric IP address level rather than with host names as proxylib does. This
means that the internal host needs access to external name service in some form. This is fairly
easy to do given a single-host gateway. There is some danger to supplying external name server
access to internal hosts and we are wary. Section 3.3.4 details our misgivings.

6.2 Syslog

Syslog is useful for managing the various logs. It has a variety of useful features: The writes
are atomic (i.e., they won’t intermix output with other logging activities), particular logs can be
recorded in several places simultaneously, logging can go off-machine, and it is a well-known
tool.

We chose to use the local log classes and assign our own names:

#define LOG_INETD LOG_LOCAL0
#define LOG_FTPD LOG_LOCAL1
#define LOG_TELNETD LOG_LOCAL2
#define LOG_SMTPD LOG_LOCAL3
#define LOG_PROXY LOG_LOCAL4
#define LOG_SMTP LOG_LOCAL5
#define LOG_SMTPSCHED LOG_LOCAL6

Most are self-explanatory. LOG INETD receives the TCP wrapper information. LOG PROXY han-
dles proxy and relay connection reports, and LOG SMTPSCHED records our mail queue scanner’s
activities.

It is important to remember what syslog does not do. It does not guarantee that your logs will
be complete, useful, readable, or available in any form amenable to automated analysis. It is worth
considerable effort to ensure that your calls to syslog do meet these criteria. In our experience, the
easiest way to do that is to build a security log subroutine library.

When designing such a library, one wants to pick a file format that will let you answer a
question like this: three months ago—and 1.8 GB ago—what were the malign activities from
FOO.BAR.EDU, sorted by type? In other words, you want concise summary records, with a single
line per incident, and different fields delimited by some fixed character. Add extra fields to some
messages if necessary to achieve consistency. Do not worry if this format is not human-friendly:
you want it suitable for standard UNIX tools like awk or perl.

If you are comfortable with a commercial database package, you may wish to use it to process
your log data. But that is probably overkill. We have felt no such need, despite the voluminous
logs our gateways create.

128 Gateway Tools

If your syslogd supports it, keep the logs on a different machine. Hackers generally go after the
log files before they do anything else, even before they plant their backdoors and Trojan horses.
You’re much more likely to detect any successful intrusions if the log files are on the protected
inside machine.

Many syslog daemons listen for messages on a UDP port, which leaves them open to denial-
of-service attacks. A vandal who sends 100 KB/sec of phony log messages would fill up a 200
MB disk partition in about half an hour. That would be a lovely prelude to an attack. Make sure
that your filters do not let that happen.

6.3 Watching the Network: Tcpdump and Friends

Sometimes, it is necessary for the Good Guys to monitor traffic on a network. Naturally, this
occurs most often during an actual intrusion, when you need to see exactly what is being done to
your system. Monitoring from the system being attacked is often possible, various opinions on
the likelihood notwithstanding [Maryland Hacker, 1993], but it is a bad idea. It’s just too easy for
the intruder to notice or disable such logging.

6.3.1 Using Tcpdump

By far the best alternative is external monitoring à la The Cuckoo’s Egg [Stoll, 1989, 1988].
For network monitoring, we recommend the tcpdump program. Though its primary purpose is
protocol analysis—and, indeed, it provides lovely translations of most of the important network
protocols—it can also record every packet going across the wire. Equally important, it can refrain
from recording them; tcpdump includes a rich language to specify what packets should be recorded.

The raw output from tcpdump isn’t too useful for intrusion monitoring. There is (by design)
no ASCII output mode, and there may be several simultaneous conversations intermixed in the
output file. But it is not hard to separate the streams and print them, although we do not know of
any publicly available tools to do so.

36

Many operating systems include similar tools. For example, SunOS has its etherfind
program, which even uses a similar syntax to tcpdump. But all of these programs share
one common danger: the very kernel driver which allows them to monitor the net can be

abused by Those With Evil Intentions to do their own monitoring—and their monitoring is usually
geared toward password collection. You may want to consider omitting such device drivers from
any machine that does not absolutely need it. But do so thoroughly; many modern systems include
the ability to load new drivers at run-time. If you can, delete that ability as well.

A number of packages are available for those of the MS-DOS faith. These, and commercial
LAN monitors, may not be as useful as UNIX-based tools for this sort of application. Continuous
contingency monitoring of a gateway LAN requires much more storage, but considerably less
monitoring of back-to-back packets than do ordinary network problems. The ability to transfer
the data to a machine where you can sort, analyze, and archive it is important as well.

Watching the Network: Tcpdump and Friends 129

DMZ

Router
(CHOKE)

Inside Nets

Regional
Net

Router

Gateway
(OUTSIDE)

Exposed Net

Filtering
Bridge

Exposed
Machines

To the
Internet

Isolation via a filtering bridge

“Smart” 10BaseT Hub

Router
(CHOKE)

Gateway
(OUTSIDE)

Exposed
Machines

Regional
Net

Router

To the
Internet

Isolation via a “smart” 10BaseT hub

Figure 6.1: Preventing exposed machines from eavesdropping on the DMZ net. A router instead of the
filtering bridge could be used to guard against address-spoofing.

On the other hand, such machines are considerably less vulnerable to penetration than are
multi-user systems. As we have noted, hackers like to find machines with promiscuous mode
Ethernet drivers. Keeping such facilities off of an exposed net is a good idea.

Conversely, if you have any unprotected machines on your DMZ net—say, experimental
machines—you must protect yourself from eavesdropping attacks launched from those systems.
Any passwords typed by your users on outgoing calls (or any passwords you type when adminis-
tering the gateway machine) are exposed on the path from the inside router to the regional net’s
router; these could easily be picked up by a compromised host on that net. The easiest way to stop
this is to install a filtering bridge or a “smart” 10BaseT hub to isolate the experimental machines.
Figure 6.1 shows how our Plan C net could be modified to accomplish this.

130 Gateway Tools

6.3.2 Ping, Traceroute, and Dig

Although not principally security tools, the ping and traceroute programs have been useful to us
in tracing packets back to their source. Ping primarily establishes connectivity. It says whether
or not hosts are reachable, and it will often tell you what the problem is if you cannot get through.
Traceroute is more verbose; it shows each hop along the path to a destination.

Often, ping will succeed, whereas traceroute will hit a barrier. The reason is the technology
they use: ping uses ICMP Echo packets, which are often (but perhaps unwisely) permitted through
firewalls, while traceroute uses UDP packets.

We rely on dig to perform DNS queries. We use it to find SOA records, to dump subtrees when
trying to resolve an address, etc. You may already have the nslookup program on your machine,
which performs similar functions. We prefer dig because it is more suitable for use in pipelines.

6.4 Adding Logging to Standard Daemons

Traditionally, the standard network daemons don’t log enough data for our purposes. For example,
login loudly reports login failures only after a certain number of unsuccessful attempts, and it only
reports the last user name tried. The hackers know this and can hide a certain number of password
attempts. We wanted to log every try, successful or not. (This level of logging is bound to yield
some passwords as users get out of sync with login, so this particular log should be read-protected
from any user community [Grampp and Morris, 1984].)

The administrator must choose between real time notification of an event and after-the-fact
scanning of the logs. We have found that real time mail notification of most events is annoying
and tedious for our busy gateway. Probes there have become old hat. But probes of a honey pot
machine should prompt a quick response.

In our early approach to network gateways we modified local daemons with impunity. We
added logging and reduced privilege everywhere we could. In our latest attempts, we have tried to
use stock software and publicly-available code whenever possible. But some modifications were
necessary. These modifications are general enough that we recommend their inclusion in future
versions of this software.

The source code for most of the daemons is available by FTP from public sources. We use the
syslog to record the logs on the local machine. We made the following changes:

inetd Log the source of each incoming call and the desired service. If you use a logging TCP
wrapper throughout, you can omit this modification.

ftpd Allow only anonymous logins, and log each FTP command and the full path and number of
bytes of every file sent or received. Switch from user root to ftp very early in the program,
and use the changes described earlier to avoid problems with port 20.

Logging from ftpd is problematic in many versions, because syslog uses the UNIX-domain
socket/dev/log to communicate with the logging daemon. Once you’ve done achroot,
this no longer works. A number of solutions are possible.

Adding Logging to Standard Daemons 131

The easiest is to change the syslog subroutine to use UDP to send the message, via the
loopback interface. Alternatively, some versions of syslogd support the -p option to specify
an alternative socket. In that case, create a /dev directory in the anonymous FTP area,
and point syslogd at /dev/log. The latter is necessary so that syslogd will read from the
proper socket. Create a symbolic link from the real /dev to point to the new socket, for
the benefit of non-chroot’ed programs.

The final solution is to change syslog to use a UNIX-domain stream socket, rather than a
datagram socket. This allows the open connection to persist across the chroot call. But
it makes life much more difficult for things like port20.

telnetd Make sure that telnet passes the caller’s address to login. Add an option to call a program
other than login.

login Add the $CALLER environment variable, and log all attempts.

Generally, the source to login is not publicly available. The code provides a number of useful
compile-time options not available to those without source. The binary-only community
should also have a chance to disable them. At the very least, a number of standard subroutine
calls should be provided, along with a linkable .o file for login. But we do not recommend
doing this via a shared library; such facilities have been responsible for security problems
on a number of different platforms.

rshd, rlogind We do not recommend that you run these daemons on a gateway machine; their authentication
mechanism is simply too weak for such an exposed situation. Nevertheless, there is one
good reason for them to exist: to avoid the necessity of storing hashed passwords on such a
machine. If you do run them, be sure to add logging. The standard versions don’t tell anyone
about attempts (and especially about unsuccessful attempts) to use them. Also, disable the
.rhosts file processing. System administrators should decide which hosts and accounts
to trust, not users.

The FTP logging has taught us that people like to browse. This was not a surprise. Though
the browsing occasionally indicated evil intentions, the sheer volume of logging all the FTP
commands may not be worth it. The FTP daemon (or a log processor) should provide a one-line
entry containing the file name, length, destination, and perhaps a process number for each file
transferred. This is useful for security and also gives file distributors an idea of the public interest
in their distribution files.

We have not put logging in named, the DNS server, and it should be there. This system
provides the basis for a number of security attacks (see Section 2.3). Things that should be logged
include zone transfers from sites other than authorized secondary servers, a too-high frequency of
inverse queries, especially for nonexistent addresses, and attempts at cache contamination. Some
of these things are difficult to do. Given the importance and fragility of named, we suggest letting
an outboard daemon do the analysis.

